Updates in the assessment of hyperfunctional voice disorders

Cara Stepp Boston University

Acknowledgements:

Stepp Lab, Boston University:

BU College of Health & Rehabilitation Sciences: Sargent College

National Institute on Deafness and Other Communication Disorders

The impact of voice disorders

- U.S. prevalence of voice disorders is 9%¹
- Vocal hyperfunction: 40% of cases²
 - "Conditions of abuse and/or misuse of the vocal mechanism due to excessive and/or 'imbalanced' muscular forces"³
 - Can be the primary cause of voice disorder or secondary to glottal insufficiency
 - Assessment primarily subjective

¹Ramig & Verdolini 1998; ²Roy 2003; ³Hillman, Holmberg, **Perkell**, Walsh, & Vaughn, 1989

Motivation

- Individuals with VH are often thought to have increased laryngeal tension
- Direct quantification of tension is ...
 difficult
- Two potential measures:
 - Kinematic: Stiffness Ratio
 - Acoustic: Relative Fundamental Frequency

Kinematic Stiffness Ratios

- Kinematic estimates of stiffness were first developed in the exercise physiology literature¹⁻⁴
- Maximum Velocity / Movement Extent
- Adopted to characterize articulatory gestures⁵⁻⁹

¹Cooke, 1980; ²Cooke, 1982; ³Feldman, 1980; ⁴Kelso & Holt, 1980; ⁵Hertrich & Ackermann, 2000; ⁶Kelso, et al., 1985; ⁷Ostry, et al., 1987; ⁸Ostry, et al., 1983; ⁹Ostry & Munhall, 1985

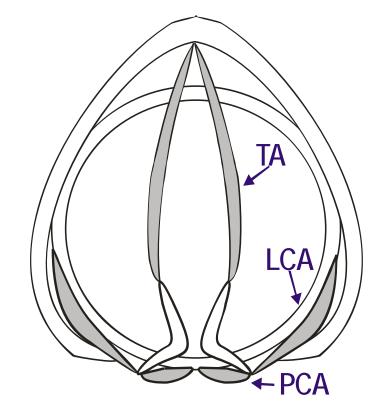


Laryngeal Kinematics

- Gross vocal fold adductory gestures differ as a function of voicing onset (soft, typical, hard)¹⁻³
- Qualifying Exam 2007:
 - Model the effects of increased laryngeal stiffness on computed kinematic estimates of stiffness
 - Test predictions on individuals with and without VH

¹Ostry & Munhall, 1985; ²Cooke et al., 1997; ³Munhall & Ostry, 1983

Modeling Hypothesis


Explicitly increasing stiffness in a mechanical model of laryngeal kinematics will increase a 'stiffness' parameter based on kinematics

Stepp, Hillman, & Heaton 2010

Model Methods

- 1 df: arytenoid cartilage rotation in 2D
 - No arytenoid translation
 - No arytenoid rotation in the sagittal plane
- Virtual trajectory model; trajectory defined using minimum square jerk

 Muscles = simple springs with parallel stiffness and damping

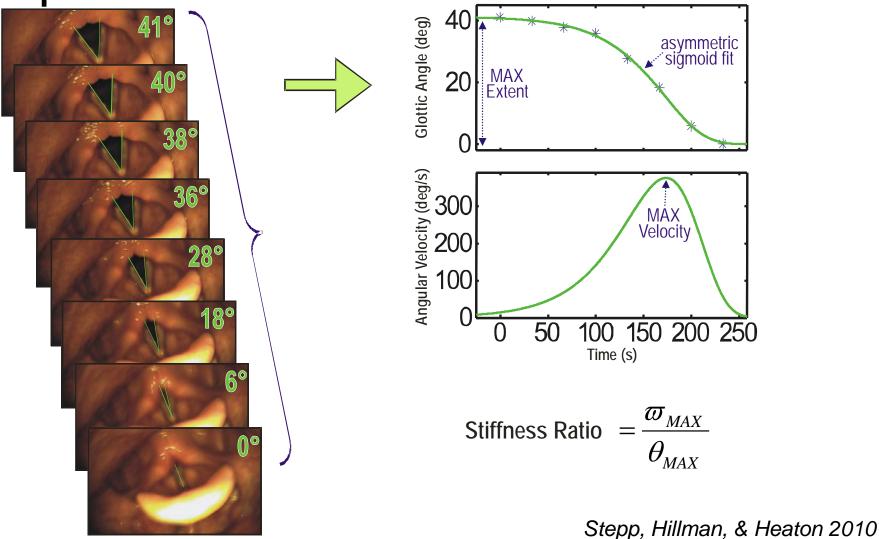
Modeling Results & Conclusions

 Increasing model stiffness parameters increased the kinematic stiffness ratios

- Experimental hypothesis:
 - Increasing gesture rate corresponds to an increase in the overall system stiffness
 - If individuals with vocal hyperfunction already have high intrinsic stiffness, the effects of increasing gesture rates will be mitigated

Stepp, Hillman, & Heaton 2010

Experimental Methods


- Female Participants:
 - Healthy Normal Voice (N=10)
 - MTD (N=10)
- "sniff-eee" maneuver 3-5 times at 72 (medium) and 104 (fast) gestures/min during transnasal endoscopy

Stepp, Hillman, & Heaton 2010


Experimental Methods

BU College of Health & Rehabilitation Sciences: Sargent College

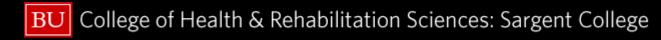
Sensorimotor Rehabilitation Engineering

Results

BU College of Health & Rehabilitation Sciences: Sargent College

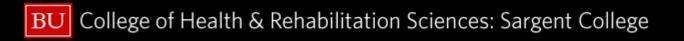
Service Tendering

Kinematic Stiffness Ratios


- Show differences between controls and VH subjects
- Are not feasible for clinical use!
 - Invasive
 - Time-commitment

Acoustic estimate of laryngeal tension

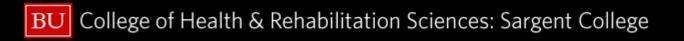
- Primary symptoms of VH detected via auditory perception
- Can the information be identified quantitatively in the acoustic signal?

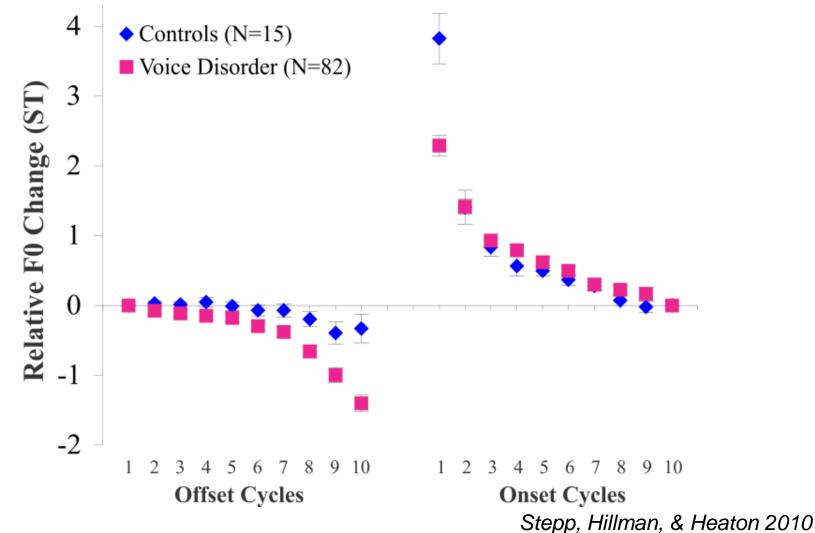

Relative Fundamental Frequency (RFF) /a/ /f/ /a/ T_{ref} T_{ref} 100 Hz offset cycles 120 Hz 105 Hz 100 Hz onset cycles $f_{\rm ref}$ $f_{\rm ref}$ RFF (ST) = $\frac{12 \log_{10}(f/f_{ref})}{\log_{10}(2)}$

BU College of Health & Rehabilitation Sciences: Sargent College

Sensorimotor Rehabilitation Engineering

RFF: measure of laryngeal tension?


- Effects of vocal hyperfunction on RFF
- Modulation of RFF in individuals with VH:
 - Effects of surgery
 - Effects of successful voice therapy


RFF: measure of laryngeal tension?

- Effects of vocal hyperfunction on RFF
- Modulation of RFF in individuals with VH:
 - Effects of surgery
 - Effects of successful voice therapy

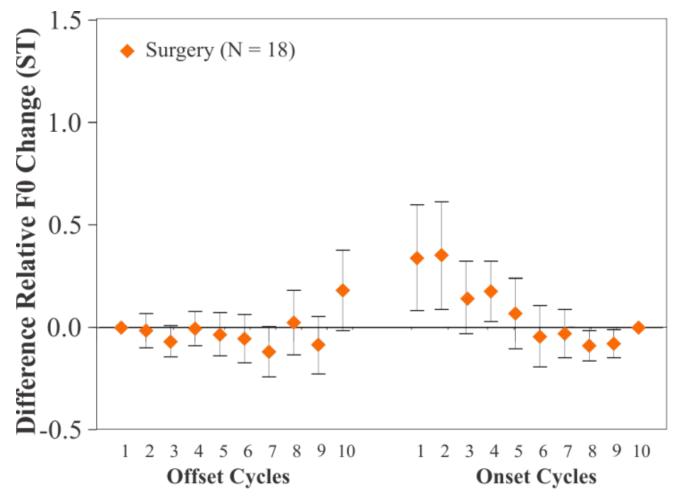
RFF in VH

BU College of Health & Rehabilitation Sciences: Sargent College

Sensorimotor Rehabilitation Engineering

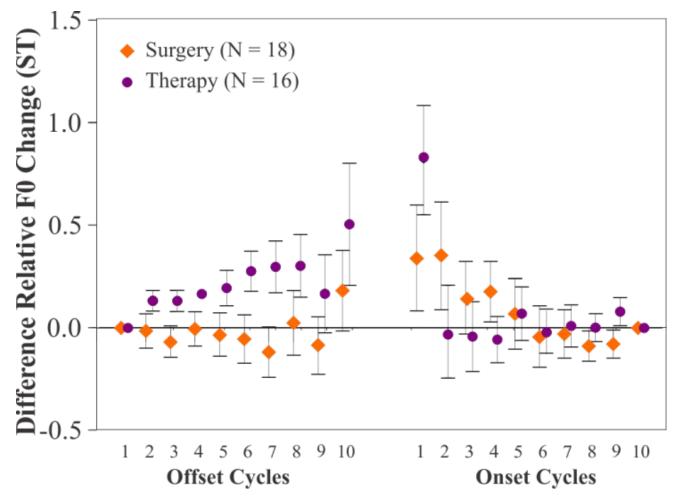
RFF: measure of vocal hyperfunction

- Effects of vocal hyperfunction on RFF
- Modulation of RFF in individuals with VH:
 - Effects of surgery
 - Effects of successful voice therapy


RFF: measure of laryngeal tension?

- Effects of vocal hyperfunction on RFF
- Modulation of RFF in individuals with VH:
 - Effects of surgery
 - Effects of successful voice therapy

Effects of surgery



Stepp, Hillman, & Heaton 2010

BU College of Health & Rehabilitation Sciences: Sargent College

Sensorimotor Rehabilitation Engineering

Effects of successful therapy

Stepp, Hillman, & Heaton 2010; Stepp, Merchant, Heaton, & Hillman, 2011

Summary: RFF

- Effects of VH
- Effects of surgery in individuals with VH

 Effects of voice therapy in individuals with VH

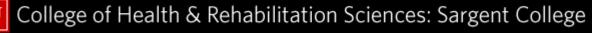
RFF: Clinical translation

- Potential clinical applications
 - Treatment outcome
 - VH predictions
- Limitations of manual estimation:
 - Subjectivity
 - Impractical time commitment

Automation

New Automated Estimates

 Highly correlated with manual estimates



Sensorimotor Rehabilitation Engineering

- Discriminate between individuals with voice disorders and those with healthy voices
- Objective
- 20–40 min/speaker \rightarrow <1 min/speaker!

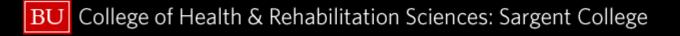
Lien, Calabrese, Michener, Heller Murray, Van Stan, Mehta, Hillman, Noordzij, & Stepp, In Review.

BU

Current Work

Use automated algorithms to validate RFF as a clinical voice measure!

- Simultaneous measurement of RFF with physiological indicators of laryngeal tension
- Large-scale data collection across multiple clinical sites
 - Across voice disorders
 - As a function of time and treatment phase



Current Work

Use automated algorithms to validate RFF as a clinical voice measure!

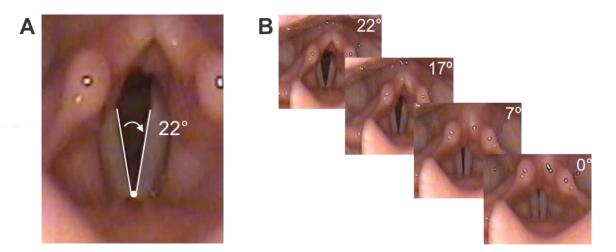
- Simultaneous measurement of RFF with physiological indicators of laryngeal tension
- Large-scale data collection across multiple clinical sites
 - Across voice disorders
 - As a function of time and treatment phase

RFF vs. Kinematic Stiffness Ratios

Purpose: Investigate the relationship between RFF and a kinematic estimate of laryngeal stiffness during speaker-modulated effort in healthy individuals

Methods

Participants


- Twelve healthy young adults
- Ages 18 31 years (M = 22.7, SD = 4.4; 10 female)
- Protocol: Iterations of /ifi/ while varying vocal effort

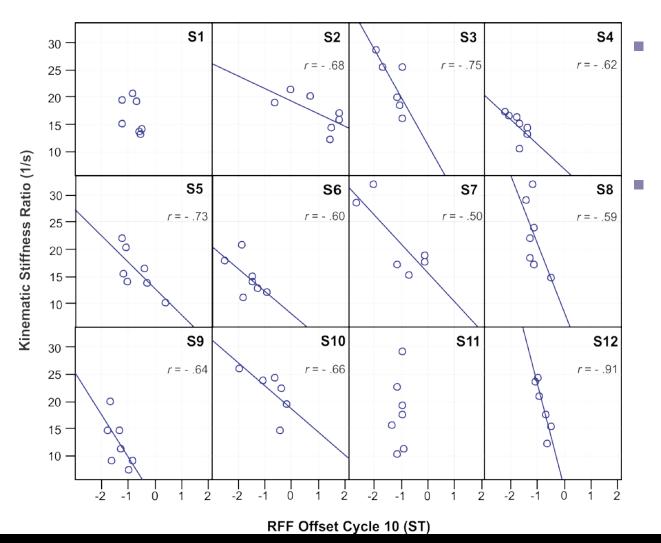
	Task	Description
1	Typical Speaking Voice	Typical pitch and loudness of conversational speech
2	Moderate Vocal Strain	Twice the speaker-perceived strain as their typical voice
3	Maximal Vocal Strain	As much speaker-perceived strain as possible
4	Breathy Voice	Allowing extra air to escape while maintaining typical loudness
5	Controlled Speed	Largo (50 words per minute)
6	Hard Glottal Attack	Overemphasize the first sound of each token
7	Push-Pull Exercise	Pull up on the arms of the chair while straining their voice

Methods

- Automated RFF algorithms¹
- Kinematic Stiffness Ratios:
 - Flexible endoscope (distal chip); Halogen light source
 - Similar methods to previous work

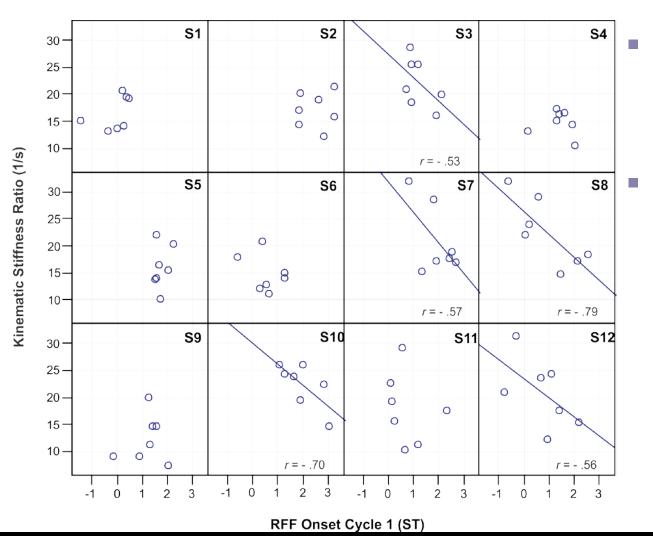
¹Lien, Calabrese, Michener, Heller Murray, Van Stan, Mehta, Hillman, Noordzij, & Stepp, In Review.

Results


- Linear mixed effect analysis: $R^2 = 0.52$
- RFF offset cycle 10 and onset cycle 1 both significantly predicted the kinematic stiffness ratios

	df	F	р	η_p^{-2}
RFF offset cycle 10	1, 79	27.5	< 0.001	.29
RFF onset cycle 1	1, 79	6.1	0.016	.08

Results: RFF offset cycle 10




```
Range:
r = - 0.9 to 0.2
```

83% exhibited at least a moderate $(r \le -0.5)$ negative correlation

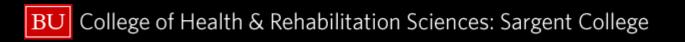
Results: RFF onset cycle 1

Range: *r* = - 0.79 to 0.46

42% exhibited at least a moderate $(r \le -0.5)$ negative correlation

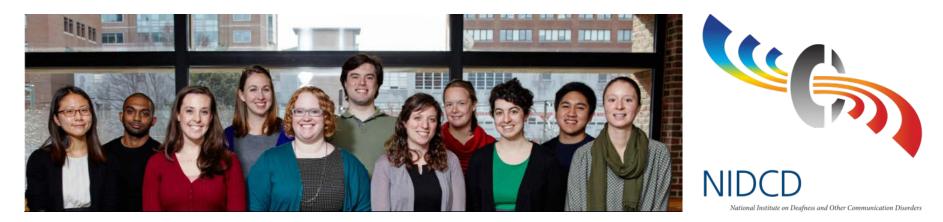
BU

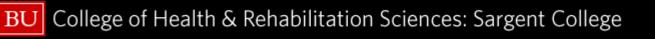
Discussion


- Kinematic stiffness ratios and RFF are significantly related
- RFF offset and onset may capture different physiological phenomena
- Individual variation

Limitations and Future Research

- Participants with VH
- Self-perceptions of laryngeal tension (self-rating)
- High-speed imaging


Questions?



Acknowledgements

Collaborators:

- Pieter Noordzij, MD
- Robert Hillman, PhD, CCC-SLP
- Daryush Mehta, PhD

